Логические элементы триггеры и другие

Логические элементы — триггеры, и другие..

В отличие от комбинационных логических схем, которые изменяют состояние в зависимости от фактических сигналов, поданных на их входы в определенное время, последовательностные логические имеют некоторую форму присущей им встроенной «памяти», так что они могут учитывать как предыдущее, так и фактическое состояние их входов и выходов. Общая структурная схема последовательностного устройства показана ниже.

RS-триггер как цифровой управляющий автомат включает собственно память и комбинационную схему управления на типовых лигических элементах, реализующую его входной логический алгоритм. Если рассматривать эту схему применительно к простейшим схемам триггеров, то они не имеют структурно выделенной памяти в виде какой-то специализированной микросхемы или схемного узла. Память триггера существует на уровне функции, она словно встроена в алгоритм работы его комбинационной схемы управления. Проявлением этой «памяти» является так называемая бистабильность триггера, выходы которого могут находиться в одном из двух основных состояний: логической единицы (далее — 1) или логического нуля (далее — 0). Установившиеся значения своих выходов триггер запоминает («защелкивает» их) и сохраняет, пока не возникнет очередное изменение его входных сигналов.

Классификация

Если стандартные логические элементы являются строительными блоками комбинационных схем, бистабильные схемы, включая и RS-триггер, являются основными компонентами построения последовательностных логических устройств, таких, как регистры хранения данных, регистры сдвига, устройства памяти или счетчики. В любом случае рассматриваемые триггеры (разумеется, как и все последовательностные схемы) могут быть выполнены в виде следующих основных типов:

1. Асинхронный RS-триггер – схема, которая изменяет состояние сразу при изменении входных сигналов. Для рассматриваемого типа устройств ими являются сигналы на информационных входах R (сброс) и S (установка). Согласно установившейся практике, соответствующие входы называют так же, как и сигналы на них.

2. Синхронный RS-триггер, управляемый статически, работа которого синхронизирована с уровнем определенного тактового сигнала.

3. Триггер по п.2 с динамическим управлением, работа которого синхронизирована с моментами появления фронтов (или спадов) тактового сигнала.

Таким образом, если изменения состояния выходов происходят только при наличии тактового сигнала, который подается на отдельный тактовый вход C, то триггер является синхронным. В противном случае схема считается асинхронной. Чтобы сохранить свое текущее состояние, последовательностные схемы используют обратную связь, т. е. передачу части выходного сигнала на ее вход.

Устройство триггера

Триггер по своей схемотехнике очень похож на простейшее электронное устройство — мультивибратор. Но в отличие от него, он имеет два устойчивых положения. Эти состояния обеспечиваются изменениями входного сигнала при достижении им определённого значения. Переход из одного положения в другое называют перебросом. В результате на выходе логического элемента возникает скачок напряжения, форма которого зависит от скорости процессов, проходящих в радиоприборах.

Наибольшее применение получил триггер, работающий на транзисторах. Связанно это со способностью последних работать в ключевом режиме. Биполярный транзистор — это полупроводниковый прибор, имеющий три вывода. Эти электроды называются:

  • эмиттер;
  • база;
  • коллектор.

В грубом приближении транзистор представляет собой два диода, объединённых электрической связью. Состоит он из двух p-n переходов. Название биполярный элемент получил из-за того, что одновременно в нём используются два типа носителей заряда. В триггерных схемах транзистор работает в режиме ключа, суть которого заключается в управлении силой тока коллектора путём изменения значения на базе. При этом коллекторный ток по своей величине превышает базовый.

При таком включении важны лишь токи, а напряжения особой роли не играют. Поэтому при возникновении определённого тока на базе транзистор открывается и пропускает через себя сигнал. Сигнал на коллекторе полупроводникового прибора будет обратным по входному знаку, то есть инвертированным. А значит, когда на базовом выходе будет присутствовать разность потенциалов, на коллекторном она будет равна нулю, и наоборот.

Эта способность транзисторов и используется в триггерах, схема которых построена на двух ключах с перекрёстными обратными связями. Когда используются транзисторные ключи с одинаковой обвязкой, то триггер считается симметричным, в другом же случае — несимметричным.

Принцип работы

Устойчивые состояния выхода триггера обеспечиваются двумя транзисторными ключами, охваченными положительной обратной связью (ПОС). Такие положения соответствуют состоянию, когда один из транзисторов открыт и находится в режиме насыщения, а второй ключ закрыт. При этом на коллекторе закрытого элемента присутствует разность потенциалов, равная его значению на входе — логическая единица, а на выводе открытого ключа напряжение отсутствует — логический ноль.

Биполярные компоненты при таком включении относительно друг друга всегда будут находиться в противоположном состоянии из-за обратной связи. Через неё один из транзисторов (закрытый) с высоким уровнем напряжения на своём коллекторном выводе обязательно будет поддерживать другой в открытом состоянии.

Вам это будет интересно Генераторы на магнитах, работающие без топлива

Если предположить, что после подачи питания на устройство оба транзистора VT1 и VT2 окажутся открытыми, то через время из-за отличия характеристик радиоэлементов, стоящих в их плечах, возникнет перекос в коллекторных токах. А это благодаря ПОС приведёт к закрытию одного из ключей. То есть обратная связь спровоцирует лавинообразный процесс перехода одного транзистора в режим насыщения, а другого в режим отсечки.

Делители, собранные на резисторах R1, R4 и R2, R3, подбираются так, чтобы их коэффициент передачи был меньше единицы. Причём для поддержания уровня сигнала они шунтируются ёмкостью, ускоряющей скорость прохождения лавинообразных процессов и повышающей надёжность состояния.

Таким образом, принцип работы триггера заключается в прохождении следующих процессов. Если на схему подаётся напряжение Ek и Eb, то биполярный ключ VT1 начинает работать в режиме насыщения, а VT2 — отсечки. Импульс, пришедший на базу VT1, приводит к уменьшению величины тока, протекающего через коллектор и увеличению напряжения на переходе коллектор-эмиттер U1ke. Напряжение через С1 и R4 прикладывается к базе VT2. Это приводит к увеличению коллекторного тока на втором ключе и уменьшению напряжения на переходе U2ke, передаваемого через C2 и R3 на базу VT1.

Итогом этих процессов станет запирание VT1 и отпирание VT2. Такое состояние останется неизменным, пока на базу VT2 не придёт отрицательный уровень сигнала. Результатом этого будут обратные электрические процессы, и VT1 закроется, а VT2 откроется.

Характеристики приборов

Триггер условно можно назвать «автоматом», способным хранить один бит информации. Простейшего вида прибор имеет два выхода, находящихся по отношению друг к другу в инверсном состоянии. Важные параметры устройства связаны с синхронизацией (тактированием) выходов, зависящей от времени предустановки и выдержки. Первый параметр характеризуется интервалом времени, в течение которого поступает разрешающий фронт синхросигнала, а второй определяется временем нахождения устойчивого состояния в неизменном положении. Ряд других характеристик триггера связывают с сигналом, проходящим через него. К ним относится:

  • нагрузочная способность — характеризуется коэффициентом разветвления (Кр) и обозначает способность прибора управлять определённым количеством параллельно подключённых элементов к выходу устройства;
  • Ко — коэффициент объединения, обозначает наибольшее число входных напряжений, которые возможно завести на вход прибора;
  • tи — минимальная продолжительность входного сигнала, то есть длительность импульса, при котором триггер ещё может перейти в инверсное состояние;
  • tзд — коэффициент задержки, указывает на временной промежуток между подачей входного сигнала и появлением напряжения на выходе;
  • tр — длительность разрешения, определяется минимальным временем прошедшим между двумя импульсами сигнала на входе и спровоцировавшего переход триггера в другое состояние.

Вам это будет интересно Особенности измерения в люменах и ваттах

Но наряду с этим выделяют и следующие технические параметры триггеров:

  • напряжение на входе — наибольшая величина разности потенциалов, которую может выдержать устройство без повреждения своей внутренней электрической схемы;
  • ток потребления — зависит от используемых элементов, обычно не превышает 2 мА;
  • разность потенциалов переключения — это минимальное значение, при котором происходит инвертирование выхода;
  • ток входа — обозначает минимальное значение необходимое для работы триггера;
  • ток выхода — значение тока, появляющееся на выходе и определяемое отдельно для логического нуля и единицы;
  • температурный диапазон — интервал, в котором технические параметры устройства не изменяются;
  • напряжение гистерезиса — разность амплитуд входного сигнала, приводящая к изменению состояния выхода устройства.

RS-триггер на логических элементах

Простейший способ его сделать – соединить вместе пару двухвходовых логических элементов И-НЕ. При этом обратная связь с выхода одного элемента подается на вход другого (см. схему ниже).

Как правило, в данной схеме входные сигналы показывают инверсными (с верхним подчеркиванием), хотя в дальнейшем при анализе работы используют обозначения прямых (неинвертированных) входов. Это сильно затрудняет понимание логики работы триггера. Поэтому мы не будем вводить инвертирование входов на этапе рассмотрения работы схемы на элементах И-НЕ, а учтем это в дальнейшем при ее модификации.

Сколько входов и выходов имеет RS-триггер? Из схемы выше видно, что он содержит S-вход и R-вход, которые служат, соответственно, для установки и сброса схемы, а также прямой Q и инверсный Q̃ выходы. Но данный простейший триггер относится к виду асинхронных, его условное обозначение показано ниже.

Читайте также:  Memory Compression в Windows 10 8212 что это такое

В синхронном устройстве имеется еще и вход C для тактовых импульсов.

RS триггеры

Рассмотрим принцип работы RS триггера возьмём микросхему К555ТР2.

Обозначение RS триггера К555ТР2

Данная микросхема имеет 4 RS триггера, два из которых имеют по одному R входу и одному S входу, а два других – по одному R входу и по два S входа, объединенных по функции И. Все 4 RS триггера данной микросхемы имеют по одному прямому выходу. Принцип работы данных триггеров не отличатся от триггерной ячейки описанной выше. Импульс с низким уровнем на входе триггера R приводит состояние выхода к низкому уровню, а импульс с низким логическим уровнем на входе триггера S – состояние выхода в высоком логическом уровне. В случае появления одновременных сигналов на входах триггера переводит его выход в состояние лог. 1, а после окончания импульсов в одно из устойчивых состояний.

Состояние «Установлен»

Рассмотрим, как происходит работа RS-триггера в этом состоянии, задаваемом значениями R = 0 и S = 1. Поскольку на вход R элемента И-НЕ Y подан уровень 0, то Q̃ =1 (логика И-НЕ). С выхода Y сигнал Q̃ также подан обратно на элемент X (вход «A»). Поскольку S = A = 1, то Q = 0.

Если устанавливается R = 1, а вход S по-прежнему равен 1, то на входах Y имеем B = 0 и R = 1, а его выход Q̃ =1, т. е. он не изменился. Итак, если S = 1, то RS-схема триггера «защелкивается» в состоянии «Установлен» Q = 0 и Q̃ = 1, а смена сигнала R его не изменяет.

Схемы триггеров Шмитта

Существует много схем триггеров Шмитта, в которых необходимо включение элементов, имеющих фиксированные пороги на входе. Можно применять дискретные транзисторы, а также операционный усилитель (ОУ) с дополнительными компонентами, способствующими созданию петли гистерезиса.

На схеме изображено как устройство формирует импульс правильной конфигурации, при произвольном входном сигнале. Подобная схема применяется для преобразования медленно изменяющихся сигналов в импульсы с чётко очерченными краями. Это выполняется и на нескольких устройствах, и на одном ОУ.

Источник



Что такое триггер, для чего он нужен, их классификация и принцип работы

Триггер – элемент цифровой техники, бистабильное устройство, которое переключается в одно из состояний и может находиться в нем бесконечно долго даже при снятии внешних сигналов. Он строится из логических элементов первого уровня (И-НЕ, ИЛИ-НЕ и т.д.) и относится к логическим устройствам второго уровня.

На практике триггеры выпускаются в виде микросхем в отдельном корпусе или входят в качестве элементов в состав больших интегральных схем (БИС) или программируемых логических матриц (ПЛМ).

Классификация и типы синхронизации триггеров

Триггеры делятся на два больших класса:

  • асинхронные;
  • синхронные (тактируемые).

Принципиальное различие между ними в том, что у первой категории устройств уровень выходного сигнала меняется одновременно с изменением сигнала на входе (входах). У синхронных триггеров изменение состояния происходит только при наличии сихронизирующего (тактового, стробирующего) сигнала на предусмотренном для этого входе. Для этого предусмотрен специальный вывод, обозначаемый буквой С (clock). По виду стробирования синхронные элементы делятся на два класса:

  • динамические;
  • статические.

У первого типа уровень выхода меняется в зависимости от конфигурации входных сигналов в момент появления фронта (переднего края) или спада тактового импульса (зависит от конкретного вида триггера). Между появлением синхронизирующих фронтов (спадов) на входы можно подавать любые сигналы, состояние триггера не изменится. У второго варианта признаком тактирования является не изменение уровня, а наличие единицы или нуля на входе Clock. Также существуют сложные триггерные устройства, классифицируемые по:

  • числу устойчивых состояний (3 и более, в отличие от 2 у основных элементов);
  • числу уровней (также более 3);
  • другим характеристикам.

Сложные элементы имеет ограниченное применение в специфических устройствах.

Типы триггеров и принцип их работы

Существует несколько основных типов триггеров. Перед тем, как разобраться в различиях, следует отметить общее свойство: при подаче питания выход любого устройства устанавливается в произвольное состояние. Если это критично для общей работы схемы, надо предусматривать цепи предустановки. В простейшем случае это RC-цепочка, которая формирует сигнал установки начального состояния.

RS-триггеры

Самый распространенный тип асинхронного бистабильного устройства – RS-триггер. Он относится к триггерам с раздельной установкой состояния 0 и 1. Для этого имеется два входа:

  • S — set (установка);
  • R — reset (сброс).

Имеется прямой выход Q, также может быть инверсный выход Q1. Логический уровень на нём всегда противоположен уровню на Q – это бывает удобно при разработке схем.

При подаче положительного уровня на вход S на выходе Q установится логическая единица (если есть инверсный выход, он перейдет на уровень 0). После этого на входе установки сигнал может меняться как угодно – на выходной уровень это не повлияет. До тех пор, пока единица не появится на входе R. Это установит триггер в состояние 0 (1 на инверсном выводе). Теперь изменение сигнала на входе сброса никак не повлияет на дальнейшее состояние элемента.

Важно! Вариант, когда на обоих входах присутствует логическая единица, является запретным. Триггер установится в произвольное состояние. При разработке схем такой ситуации надо избегать.

RS-триггер можно построить на основе широко распространенных двухвходовых элементов И-НЕ. Такой способ реализуем как на обычных микросхемах, так и внутри программируемых матриц.

Один или оба входа могут быть инверсными. Это означает, что по этим выводам триггер управляется появлением не высокого, а низкого уровня.

Если построить RS-триггер на двухвходовых элементах И-НЕ, то оба входа будут инверсными – управляться подачей логического нуля.

Существует стробируемый вариант RS-триггера. У него имеется дополнительный вход С. Переключение происходит при выполнении двух условий:

  • присутствие высокого уровня на входе Set или Reset;
  • наличие тактового сигнала.

Такой элемент применяют в случаях, когда переключение надо задержать, например, на время окончания переходных процессов.

D-триггеры

D-триггер («прозрачный триггер», «защелка», latch) относится к категории синхронных устройств, тактируемых по входу С. Также имеется вход для данных D (Data). По функциональным возможностям устройство относится к триггерам с приёмом информации по одному входу.

Пока на входе для синхронизации присутствует логическая единица, сигнал на выходе Q повторяет сигнал на входе данных (режим прозрачности). Как только уровень строба перейдет в состояние 0, на выходе Q уровень останется тем же, что был в момент перепада (защелкнется). Так можно зафиксировать входной уровень на входе в любой момент времени. Также существуют D-триггеры с тактированием по фронту. Они защёлкивают сигнал по положительному перепаду строба.

На практике в одной микросхеме могут объединять два типа бистабильных устройств. Например, D и RS-триггер. В этом случае входы Set/Reset являются приоритетными. Если на них присутствует логический ноль, то элемент ведёт себя как обычный D-триггер. При появлении хотя бы на одном входе высокого уровня, выход устанавливается в 0 или 1 независимо от сигналов на входах С и D.

Прозрачность D-триггера не всегда является полезным свойством. Чтобы её избежать, применяются двойные элементы (flip-flop, «хлопающий» триггер), они обозначаются литерами TT. Первым триггером служит обычная защёлка, пропускающая входной сигнал на выход. Второй триггер служит элементом памяти. Тактируются оба устройства одним стробом.

T-триггеры

T-триггер относится к классу счётных бистабильных элементов. Логика его работы проста – он изменяет своё состояние каждый раз, когда на его вход приходит очередная логическая единица. Если на вход подать импульсный сигнал, выходная частота будет в два раза выше входной. На инверсном выходе сигнал будет противофазен прямому.

Так работает асинхронный Т-триггер. Также существует синхронный вариант. При подаче импульсного сигнала на тактирующий вход и при наличии логической единицы на выводе T, элемент ведёт себя так же, как и асинхронный – делит входную частоту пополам. Если на выводе Т логический ноль, то выход Q устанавливается в низкий уровень независимо от наличия стробов.

JK-триггеры

Этот бистабильный элемент относится к категории универсальных. Он может управляться раздельно по входам. Логика работы JK-триггера похожа на работу RS-элемента. Для установки выхода в единицу используется вход J (Job). Появление высокого уровня на выводе K (Keep) сбрасывает выход в ноль. Принципиальным отличием от RS-триггера является то, что одновременное появление единиц на двух управляющих входах не является запретным. В этом случае выход элемента меняет свое состояние на противоположное.

Если выходы Job и Keep соединить, то JK-триггер превращается в асинхронный счётный Т-триггер. Когда на объединённый вход подаётся меандр, на выходе будет в два раза меньшая частота. Как и у RS-элемента, существует тактируемый вариант JK-триггера. На практике применяются, в основном, именно стробируемые элементы такого типа.

Практическое использование

Свойство триггеров сохранять записанную информацию даже при снятии внешних сигналов позволяет применять их в качестве ячеек памяти ёмкостью в 1 бит. Из единичных элементов можно построить матрицу для запоминания двоичных состояний – по такому принципу строятся статические оперативные запоминающие устройства (SRAM). Особенностью такой памяти является простая схемотехника, не требующая дополнительных контроллеров. Поэтому такие SRAM применяются в контроллерах и ПЛМ. Но невысокая плотность записи препятствует использованию таких матриц в ПК и других мощных вычислительных системах.

Читайте также:  Установка игры калов дьюти

Выше упоминалось использование триггеров в качестве делителей частоты. Бистабильные элементы можно соединять в цепочки и получать различные коэффициенты деления. Та же цепочка может быть использована в качестве счетчика импульсов. Для этого надо считывать с промежуточных элементов состояние выходов в каждый момент времени – получится двоичный код, соответствующий количеству пришедших на вход первого элемента импульсов.

В зависимости от типа примененных триггеров, счетчики могут быть синхронными и асинхронными. По такому же принципу строятся преобразователи последовательного кода в параллельный, но здесь используются только стробируемые элементы. Также на триггерах строятся цифровые линии задержки и другие элементы двоичной техники.

RS-триггеры используются в качестве фиксаторов уровня (подавителей дребезга контактов). Если в качестве источников логического уровня применяются механические коммутаторы (кнопки, переключатели), то при нажатии эффект дребезга сформирует множество сигналов место одного. RS-триггер с этим успешно борется.

Область применения бистабильных устройств широка. Круг решаемых с их помощью задач во многом зависит от фантазии конструктора, особенно в сфере нетиповых решений.

Источник

RS-триггер

Триггер

Одним из важнейших элементов цифровой техники является триггер (англ. Trigger — защёлка, спусковой крючок).

Сам триггер не является базовым элементом, так как он собирается из более простых логических схем. Семейство триггеров весьма обширно. Это триггеры: T, D, C, JK, но основой всех является самый простой RS-триггер.

Без RS триггеров невозможно было бы создание никаких вычислительных устройств от игровой приставки до суперкомпьютера. У триггера два входа S (set) — установка и R (reset) — сброс и два выхода Q-прямой и Q— инверсный. Инверсный выход имеет сверху чёрточку. Триггер бистабильная система, которая может находиться в одном из двух устойчивых состояний сколь угодно долго. На рисунке показан RS-триггер выполненный на элементах 2ИЛИ – НЕ.

RS-триггер на логических элементах 2ИЛИ-НЕ

Точно так же триггер может быть выполнен и на элементах 2И – НЕ.

Единственная разница это то, что триггер на элементах И – НЕ активируется, то есть переводится в другое состояние потенциалом логического нуля. Триггер, собранный на элементах ИЛИ – НЕ активируется логической единицей. Это определяется таблицей истинности логических элементов. При подаче положительного потенциала на вход S мы получим на выходе Q высокий потенциал, а на выходе Q низкий потенциал. Тем самым мы записали в триггер, как в ячейку памяти, единицу. Пока на вход R не будет подан высокий потенциал, состояние триггера не изменится.

На принципиальных схемах триггер изображается следующим образом.

Изображение RS-триггера на схеме

Два входа R и S, два выхода прямой и инверсный и буква Т означающая триггер.

Хорошо отображает принцип работы RS-триггера несложная схема, собранная на двух элементах 2И – НЕ. Для этого используется микросхема 155ЛА3, которая содержит четыре таких элемента. Нумерация на схеме соответствует выводам микросхемы. Напряжение питания +5V подаётся на 14 вывод, а минус подаётся на 7 вывод микросхемы. После включения питания триггер установится в одно из двух устойчивых состояний.

Схема RS-триггера на микросхеме К155ЛА3

Исходя из того, что сопротивление переходов транзисторов логических элементов не может быть абсолютно одинаковым, то триггер после включения питания, как правило, принимает одно и то же состояние.

Допустим, после подачи питания у нас горит верхний по схеме светодиод HL1. Можно сколько угодно нажимать кнопку SB1 ситуация не изменится, но достаточно на долю секунды замкнуть контакты кнопки SB2 как триггер поменяет своё состояние на противоположное. Горевший светодиод HL1 погаснет и загорится другой — HL2. Тем самым мы перевели триггер в другое устойчивое состояние.

На данной схеме всё достаточно условно, а на реальном триггере принято считать, что если на прямом выходе "Q" высокий уровень то триггер установлен, если уровень низкий то триггер сброшен.

Основной недостаток рассматриваемого триггера это, то, что он асинхронный. Другие более сложные схемы триггеров синхронизируются тактовыми импульсами общими для всей схемы и вырабатываемые тактовым генератором. Кроме того сложная входная логика позволяет держать триггер в установленном состоянии до тех пор пока не будет сформирован сигнал разрешения смены состояния триггера.

RS-триггер может быть и синхронным, но двух логических элементов для этого мало.

На рисунке изображена схема синхронного RS-триггера. Такой триггер может быть собран на микросхеме К155ЛА3, которая содержит как раз четыре элемента 2И – НЕ. В данной схеме переключение триггера из одного состояния в другое может быть осуществлено только в момент прихода синхроимпульса на вход "C".

Схема синхронного RS-триггера

На рассмотренной выше схеме переключение триггера осуществляется с помощью кнопок. Такой вариант используется достаточно часто и именно для кнопочного управления какой-либо аппаратурой. В электронике существует понятие «дребезг контактов» то есть, когда мы нажимаем кнопку, на вход устройства проникает целый пакет импульсов, который может привести к серьёзным нарушениям в работе. Использование RS-триггера позволяет избежать этого.

Благодаря своей простоте и недорогой стоимости RS-триггеры широко применяются в схемах индикации. Часто для повышения надёжности и устранения возможности случайного срабатывания RS-триггер собирается по так называемой двухступенчатой схеме. Вот схема.

Схема двухступенчатого триггера

Здесь можно видеть два совершенно одинаковых синхронных RS-триггера, только для второго триггера синхроимпульсы инвертируются. Первый триггер в связке называют M (master) — хозяин, а второй триггер называется S (slave) — раб.

Допустим на входе "С" высокий потенциал. М-триггер принимает информацию, но низкий потенциал на входе синхронизации S-триггера блокирует приём информации. После того как потенциал поменялся на противоположный информация из M-триггера записывается в S-триггер, но приём информации в M-триггер блокируется.

Такая двухступенчатая система намного надёжнее обычного RS-триггера. Она свободна от случайных срабатываний.

Для более наглядного изучения работы RS-триггера рекомендую провести эксперименты с RS-триггером.

Источник

Лабораторная работа в программе схемотехнического моделирования Multisim «Исследование принципа работы Т-триггера, D-триггера, JK-триггера»

В зависимости от функции, выполняемой триггером, применяют два способа его запуска — раздельный и общий (или счетный). При раздельном запуске запускающие импульсы одной полярности поступают на входы (базы или коллекторы) транзисторов от двух разных источников (т.е. от одного источника запускающие импульсы поступают на вход одного транзистора, а от другого — на вход другого) (рис.3). Импульсы с одного из входов устанавливают триггер в одно из двух состояний равновесия. Если к приходу такого импульса триггер уже находится в этом состоянии, то оно не изменяется. Импульсы, подаваемые на второй вход устанавливают триггер в противоположное состояние.

Для раздельного запуска триггера требуются сравнительно короткие импульсы. Часто в качестве входного сигнала запуска используются перепады напряжений. В этих случаях формирование необходимых запускающих импульсов производится с помощью подключаемых ко входам триггера укорачивающих RC — цепей. Чтобы предотвратить срабатывание триггера от импульсов обратной полярности, возникающих на выходах укорачивающих цепей применяются диоды Дн.

При счетном запуске управляющие импульсы поступаю от общего генератора на один общий вход триггера (рис.4). При этом каждый импульс изменяет состояние триггера на противоположное.

В исходном состоянии напряжение на коллекторе насыщенного транзистора T1 близко к нулю» диод Дн’ открыт, конденсатор Су’ разряжен. За счет высокого отрицательного потенциала закрытого транзистора T2 передаваемого через сопротивление Rб», диод Дн» закрыт, а конденсатор Су» заряжен до напряжения Ек (в полярности, указанной на рис. 4 ). Следовательно, положительный запускающий импульс напряжения поступит только через открытый диод Дн’ на базу насыщенного транзистора и вызовет опрокидывание триггера.

Если действие положительного входного импульса не завершится до окончания опрокидывания триггера, то напряжение, прикладываемое к диоду Дн», окажется равным сумме положительного входного напряжения и отрицательного напряжения на конденсаторе Су». Так как обычно амплитуда входного сигнала меньше Ек, то результирующее напряжение, приложенное к диоду Дн» будет отрицательным, и диод попрежнему будет закрыт. По окончании входного импульса конденсатор Су» разрядится через малое сопротивление открывшегося транзистора T2 и внутреннее сопротивление источника запускающих импульсов, а конденсатор Су’ зарядится до напряжения Ек. Диод Дн» откроется, а Дн’ закроется. Очередной запускающий импульс пройдет через диод Дн» и вызовет новое опрокидывание триггера.

Лекция схемотехника триггеры

Лекция. Элементы схемотехники ЭВМ. Триггеры.

Триггером называется устройство, имеющее два устойчивых состояния и способное под действием входного сигнала скачком переходить из одного устойчивого состояния в другое. Триггер — это простейший цифровой автомат с памятью и способностью хранить 1 бит (binary digit — двоичный разряд) информации. В основе любого триггера находится регенеративное кольцо из двух инверторов. Триггер имеет два выхода: прямой Q и инверсный Q. Число входов зависит от структуры и функций, выполняемых триггером. В настоящее время существует несколько разновидностей триггерных схем. Они появились как результат разработки новых цепей запуска.

По способу записи информации триггеры делятся на асинхронные (несинхронизируемые) и синхронные (синхронизированные). У асинхронных триггеров запись информации (переключение триггера) происходит под действием информационных сигналов. Такие триггеры имеют только информационные входы. У синхронных триггеров запись информации происходит под действием разрешающих сигналов синхронизации.

Читайте также:  Выбираем унитазы Villeroy amp Boch

Синхронные триггеры бывают: со статическим управлением записью, с динамическим управлением записью и двухступенчатые.

Синхронные триггеры со статическим управлением записью принимают информационные сигналы все время, пока действует импульс синхронизации. Следовательно, за время действия импульса синхронизации переключение триггера может быть многократным. У таких триггеров вход С — статический.

Синхронные триггеры с динамическим управлением записью принимают только те информационные сигналы, которые были на информационных входах к моменту прихода синхронизирующего импульса. У таких триггеров вход С — динамический.

Синхронные двухступенчатые триггеры состоят из двух ступеней. Запись информации в первую ступень производится с появлением синхронизирующего импульса, а во вторую ступень — после окончания действия синхронизирующего импульса. Следовательно, двухступенчатые триггеры задерживают выходную информацию на время, равное длительности синхронизирующего импульса. Такие триггеры называют еще триггерами с внутренней задержкой.

В составе серий ТТЛ выпускаются микросхемы, содержащие RS-, D- и JK-триггеры. Приняты следующие обозначения входов триггеров:

  • S — раздельный вход установки триггера в единичное состояние по прямому выходу Q (Set-установка);
  • R — раздельный вход сброса триггера в нулевое состояние по прямому выходу Q (Reset-сброс);
  • D — информационный вход (Data input). На него подается информация, предназначенная для записи в триггер;
  • T — счетный вход (Toggle-переключатель);
  • C — вход синхронизации (Clock input).

Назначение входов J и К такое же, как и входов S и R (установка и сброс). Буквы J и К. были выбраны в свое время авторами как соседние в алфавите (сравните S и R).

2.5.1. RS-триггеры

RS-триггер — это триггер с раздельной установкой состояний логического нуля и единицы (с раздельным запуском). Он имеет два информационных входа S и R. По входу S триггер устанавливается в состояние Q=l (/Q=0), а по входу R — в состояние Q = О (/Q = 1).

Асинхронные RS-триггеры. Они являются наиболее простыми триггерами. В качестве самостоятельного устройства применяются редко, но являются основой для построения более сложных триггеров. В зависимости от логической структуры различают RS-триггеры с прямыми и инверсными входами. Их схемы и условные обозначения приведены на рис. 2.37. Триггеры такого типа построены на двух логических элементах: 2 ИЛИ-НЕ — триггер с прямыми входами (рис. 2.37, а), 2 И-НЕ — триггер с инверсными входами (рис. 2.37, б). Выход каждого из логических элементов подключен к одному из входов другого элемента, что обеспечивает триггеру два устойчивых состояния.

Рис. 2.37. Асинхронные RS-триггеры: а — RS-триггер на логических элементах ИЛИ-НЕ и условное обозначение; б — RS-триггер на логических элементах И-НЕ и условное обозначение.

Состояния триггеров под воздействием определенной комбинации входных сигналов приведены в таблицах функционирования (состояний) (табл. 2.18).

Таблица 2.18. Состояния триггеров.
Входы Выходы
S R Логика И-НЕ Логика ИЛИ-НЕ
Qn+1 /Qn+1 Qn+1 /Qn+1
X Qn /Qn
1 1 1
1 1 1
1 1 Qn /Qn X

В таблицах Qn (/Qn) обозначены уровни, которые были на выходах триггера до подачи на его входы так называемых активных уровней. Активным называют логический уровень, действующий на входе логического элемента и однозначно определяющий логический уровень выходного сигнала (независимо от логических уровней, действующих на остальных входах). Для элементов ИЛИ-НЕ за активный уровень принимают высокий уровень — 1, а для элементов И-НЕ — низкий уровень — О. Уровни, подача которых на один из входов не приводит к изменению логического уровня на выходе элемента, называют пассивными. Уровни Qn+1(/Qn+1) обозначают логические уровни на выходах триггера после подачи информации на его входы. Для триггера с прямыми входами при подаче на вход комбинации сигналов S=1, R=0 на выходе получим Qn+1=1 (/Qn+1=0). Такой режим называют режимом записи логической единицы.

Если со входа S снять единичный сигнал, т. е. установить на входе S нулевой сигнал, то состояние триггера не изменится. Режим S=0, R=0 называют режимом хранения информации, так как информация на выходе остается неизменной.

При подаче входных сигналов S=0, R=1 произойдет переключение триггера, а на выходе будет Qт+1=0 (/Qn+1=1). Такой режим называют режимом записи логического нуля (режим сброса). При S=R=1 состояние триггера будет неопределенным, так как во время действия информационных сигналов логические уровни на выходах триггера одинаковы (Qn+1=/Qn+1=0), а после окончания их действия триггер может равновероятно принять любое из двух устойчивых состояний. Поэтому такая комбинация S=R=1 является запрещенной.

Для триггера с инверсными входами режим записи логической единицы реализуется при /S=0, /R=1, режим записи логического нуля — при /S=1, /R=0. При /S=/R=1 обеспечивается хранение информации. Комбинация входных сигналов /S = /R = 0 является запрещенной.

Микросхема ТР2 включает четыре асинхронных RS-триггера, причем два из них имеют по два входа установки /S. Управляющим сигналом является уровень логического нуля (низкий уровень), так как триггеры построены на логических элементах И-НЕ с обратными связями (т. е. входы инверсные статические). Установка триггера в состояние высокого или низкого уровня осуществляется кодом 01 или 10 на входах /S и /R со сменой кода информации. Если на входах /S1 = /S2 = /R = 0, то на выходе Q появится напряжение высокого уровня — 1. Однако это состояние не будет зафиксировано, «защелкнуто»; если входные уровни 0 убрать, на выходе Q появится неопределенное состояние. При подаче на входы /S1 = /S2 = R = 1 напряжение на выходе останется без изменения. Достаточно на одном из входов /S триггера установить низкий уровень напряжения — 0, а на входе /R высокий уровень напряжения — 1, и триггер установится в состояние высокого уровня Qn+1 = 1. Табл. 2.19 дает состояния одного из триггеров микросхемы TP2.

Таблица 2.19. Состояния триггера ТР.
Входы Выход
/S1 /S2 /S /R Qn+1
1 1 1 1 Qn
1 1 1
1
1 1 1
1 1*
1

Примечание: 1* — неустойчивое состояние, может не сохраняться после снятия «0» со входов /S и /R.

Временные диаграммы его работы, а также цоколевка представлены на рис. 2.38

Рис. 2.38. Условное обозначение, цоколевка и временные диаграммы работы микросхем типа ТР.

Основные параметры приведены в табл. 2.20б.

Синхронные RS-триггеры. Триггерные ячейки — это основа делителей частоты, счетчиков и регистров. В этих устройствах записанную ранее информацию по специальному сигналу, называемому тактовым, следует передать на выход и переписать в следующую ячейку. Для осуществления такого режима в RS-триггер необходимо ввести дополнительный вход С, который может быть статическим или динамическим, т. е. получим синхронный RS-триггер.

Схема синхронного RS-триггера на логических элементах И-НЕ со статическим управлением записью (вход С — статический) и его условное обозначение приведены на рис. 2.39, а.

Рис. 2.39. Синхронные RS-триггеры: а — синхронный RS-триггер на элементах И-НЕ и условное обозначение; б — синхронный RS-триггер на элементах ИЛИ-НЕ и условное обозначение.

Элементы DD1.1 и DD1.2 образуют схему управления, а элементы DD1.3 и DD1.4 — асинхронный RS-триггер. Иногда такой триггер называют RST-триггером (если вход С считать тактовым входом Т).

Триггер имеет прямые статические входы, поэтому управляющим сигналом является уровень логической единицы.

Если на вход С подать сигнал логической единицы C=1, то работа триггера аналогична работе простейшего асинхронного RS-триггера. При C=0 входы S и R не оказывают влияние на состояние триггера. Комбинация сигналов S=R=C=1 является запрещенной. Табл. 2.21 отражает состояния такого триггера.

Синхронный RS-триггер, выполненный на элементах ИЛИ-НЕ, будет иметь инверсные статические входы (рис. 2.39,б). Его функционирование будет определяться таблицей состояний при /C=0 (табл. 2.22). Запрещенной комбинацией входных сигналов будет комбинация /S=/R=/C=0.

Таблица 2.21. Состояния триггера
Входы Выходы
S R C Qn+1 /Qn+1
Qn /Qn
1 1 1
1 1 1
1 1 1 X

Таблица 2.22. Состояния триггера

Входы Выходы
/S /R /C Qn+1 /Qn+1
1 1 1 Qn /Qn
1 1 1
1 1 1
X

Синхронный RS-триггер с динамическим управлением записью функционирует согласно сигналам, которые были на информационных входах S и R к моменту появления перепада на входе С. Схема такого триггера, его условное обозначение даны на рис. 2.40.

Рис. 2.40. Синхронный RS-триггер с динамическим управлением на логических элементах И-НЕ и условное обозначение.

Элементы DD1.1 … DD1.4 образуют схему управления, а DD1.5 и DD1.6 — асинхронный RS-триггер, выполняющий роль элемента памяти. У данного триггера входы /S и /R инверсные статические (управляющий сигнал — уровень логического нуля), вход С — прямой динамический. Новое состояние триггера устанавливается положительным перепадом напряжения (от уровня логического нуля до уровня логической единицы) на входе С в соответствии с сигналами на информационных входах /S и /R. Функционирование триггера при некоторых комбинациях входных сигналов можнопроследить с помощью таблицы состояний (табл. 2.23).

Таблица 2.23.
Входы Внутренние выходы Выходы
/S /R C A1 A2 A3 A4 Q /Q
1 1 X 1 1 1
1 X 1 1 1 1
1 _/ 1 1 1
1 _/ 1 1 1 1
1 X 1 1 1 1
1 _/ 1 1 1

Синхронный двухступенчатый RS-триггер (master-slave, что переводится «мастер-помощник») состоит из двух синхронных RS-триггеров и инвертора, рис. 2.41, а. Входы С обоих триггеров соединены между собой через инвертор DD1.1. Если C=1, то первый триггер функционирует согласно сигналам на его входах S и R. Второй триггер функционировать не-может, т. к, у него C=0. Если C=0, то первый триггер не функционирует, а для второго триггера C=1, и он изменяет свое состояние согласно сигналам на выходах первого триггера.

Источник