Занятие 24 Адсорбционные процессы

Занятие № 24. Адсорбционные процессы

Адсорбция — процесс поглощения газов (паров) или жидкостей, по­верхностью твердых тел (адсорбентов). Явление адсорбции связано с наличием сил притяжения между молекулами адсорбента и поглощае­мого вещества. По сравнению с другими массообменными процессами адсорбция наиболее эффективна в случае малого содержания извле­каемых компонентов в исходной смеси.

Различают два основных вида адсорбции: физическую и химическую (или хемосорбцию). Физическая адсорбция вызывается силами взаи­модействия молекул поглощаемого вещества с адсорбентом (диспер­сионными или ван-дер-ваальсовскими). Однако молекулы, соприкаса­ясь с поверхностью адсорбента, насыщают его поверхность, что ухуд­шает процесс адсорбции. Химическая адсорбция характеризуется химическим взаимодействием между средой и адсорбентом, что может образовывать новые химические соединения на поверхности адсорбента. Оба вида адсорбции экзотермичны. Однако если теплота физической адсорбции промышленных газов и паров соизмерима с их — теплотой конденсации (85-125 кДж/кмоль),- а в случае растворов даже меньше, то теплота химической адсорбции достигает нескольких сотен кило­джоулей на киломоль. Химическая адсорбция протекает обычно с не­большой скоростью и возможна при высоких температурах, когда фи­зическая адсорбция ничтожно мала.

Переход вещества из газовой и жидкой фаз в адсорбированное со­стояние связан с потерей одной степени свободы, т. е. сопровождается уменьшением энтропии и энтальпии системы, следовательно, выделени­ем теплоты. При этом различают дифференциальную и интегральную теплоты адсорбции; первая выражает количество выделяющейся теп­лоты при поглощении очень малого количества вещества (2 г/100 г ад­сорбента), вторая — при поглощении до полного насыщения адсорбента. Повышение температуры в каждом процессе адсорбции зависит от теплоты адсорбции и массовой скорости газового (парового) потока, от температуропроводности этого потока и адсорбента, количества ад­сорбированного вещества и его концентрации. Так как адсорбционная способность адсорбента снижается с ростом температуры, экзотермичность процесса должна учитываться в инженерных расчетах. При боль­ших тепловыделениях прибегают к охлаждению слоя адсорбента.

Процессы адсорбции отличаются избирательностью и обратимостью, позволяя поглощать (адсорбировать) из газовых (паровых) смесей и растворов один или несколько компонентов, а затем в других условиях выделять (десорбировать) их из твердой фазы. При этом избиратель­ность зависит от природы адсорбента и адсорбируемых веществ, а предельное удельное количество поглощаемого вещества зависит еще от его концентрации в исходной смеси и температуры, а в случае га­зов — также от давления.

Адсорбенты — пористые тела с сильно развитой поверхностью пор. Удельная поверхность пор может достигать 1000 м 2 / г . Адсорбенты применяют в виде таблеток или шариков размером от 2 до 6 мм, а также порошков с размером частиц от 20 до 50 мкм. В качестве адсорбентов используют активированный уголь, силикагель, алю­мосиликаты, цеолиты (молекулярные сита) и др. Важной характеристикой адсорбентов является их активность, под которой понимают массу адсорбированного вещества на единицу массы адсорбента в условиях равновесия. Активность адсорбента равна

где М — масса поглощенных компонентов; G — масса адсорбента.

Адсорбенты характеризуются также временем защитного действия, под которым понимают время, в течение которого концентрация поглощаемых веществ на выходе из слоя адсорбента не изменяется. При большем времени работы адсорбента происхо­дит проскок поглощаемых компонентов, связанный с исчерпанием активности адсор­бента. В этом случае необходима регенерация или замена адсорбента.

Достижению равновесия между твердой и подвижной газовой фаза­
ми соответствует поглощение максимального количества вещества. Ус­ловия равновесия описываются в виде зависимости поглощающей способности (количества вещества М, поглощаемого единицей массы или объема адсорбента) от температуры Т и концентрации С поглощаемо­го вещества в равновесной подвижной фазе, т.е.М = f(Т, С). Обычно условия адсорбционного равновесия изучают при постоянной темпера­туре. Зависимость М = f(G) называется изотермой адсорбции. Кон­кретная форма этой зависимости определяется свойствами и механиз­мом взаимодействия адсорбента и адсорбируемого вещества.

В связи с разнообразием адсорбентов и адсорбируемых веществ единая теория адсорбции пока не разработана. Закономерности про­цессов адсорбции, в которых определяющую роль играют ван-дер-ваальсовские силы притяжения, можно удовлетворительно описать так называемой потенциальной теорией адсорбции. Согласно этой теорий на поверхности адсорбента образуется полимолекулярный адсорбцион­ный слой, энергетическое состояние молекул в котором определяется значением адсорбционного потенциала, являющегося функцией рассто­яния от поверхности, и не зависит от температуры. Наибольшее значе­ние адсорбционный потенциал имеет, на поверхности адсорбента. По­тенциальная теория применима к процессам адсорбции на адсорбен­тах, размеры пор которых соизмеримы с размерами поглощаемых мо­лекул. В таких случаях происходит не послойное, а объемное заполне­ние пор.

Для описания процесса мономолекулярной адсорбции наибольшее применение получила теория Лангмюра, согласно которой за счет некомпенсированных сил у поверхностного атома или молекулы ад­сорбента адсорбированная молекула удерживается некоторое время на
поверхности. Адсорбция происходит в особых точках поверхности — цен­трах адсорбции. Материальные по­токи, участвующие в процессах ад­сорбции и десорбции, содержат переносимые и «инертные» компонен­ты. Под первыми понимаются веще­ства, переходящие из одной фазы в другую, а под вторыми — те кото­рые в таком переносе не участвуют. В твердой фазе «инертным» компо­нентом является адсорбент.

Скорость процесса адсорбции за­висит от условий транспорта адсор­бируемого вещества к поверхности адсорбента (внешний перенос), а также от переноса адсорбируемого вещества внутрь зерен адсорбента (внутренний перенос). Скорость внешнего переноса определяется гид­родинамической обстановкой процесса, а внутреннего — структурой адсорбента и физико-химическими свойствами системы.

2. УСТРОЙСТВО АДСОРБЕНТОВ И СХЕМЫ АДСОРБЦИОННЫХ УСТАНОВОК

Процессы адсорбции проводятся в, основном следующими способа­ми: 1) с неподвижным слоем адсорбента;

Источник

Абсорбционные и адсорбционные аппараты.

1. Абсорбция. Конструкции, принцип действия абсорбционных аппаратов

Для получения целевых продуктов, выделения компонентов из газовых смесей, удаления посторонних примесей из газовых и жидких смесей, осушки и в других случаях применяют сорбционные установки. Сорбция — физико-химический процесс, в результате которого происходит поглощение каким-либо телом газов, паров или растворенных веществ из окружающей среды. Понятие сорбции включает как абсорбцию, так и адсорбцию.

Абсорбция — поглощение газа в объеме, а также избирательное поглощение одного или нескольких компонентов газовой смеси жидким поглотителем (абсорбентом). Поглощение газа может происходить либо в результате его растворения в абсорбенте, либо в результате его химического взаимодействия с абсорбентом. В первом случае процесс называют физической абсорбцией, а во втором — хемосорбцией. Возможно также сочетание обоих механизмов процесса.

Физическая абсорбция в большинстве случаев обратима. На этом свойстве абсорбционных процессов основано выделение поглощенного газа из раствора — десорбция. Сочетание абсорбции с десорбцией позволяет многократно применять поглотитель и выделять поглощенный компонент в чистом виде.

Абсорбентами служат однородные жидкости или растворы активного компонента в жидком растворителе. Во всех случаях к абсорбентам предъявляют ряд требований, среди которых наиболее существенными являются высокая абсорбционая способность, селективность, низкое давление паров, химическая инертность по отношению к распространенным конструкционным материалам (при физической абсорбции — также к компонентам газовых смесей), нетоксичность, огне- и взрывобезопасность, доступность и невысокая стоимость.

С технологической точки зрения лучшим является тот абсорбент, расход которого для проведения заданного процесса меньше, т. е. в котором растворимость поглощаемого вещества выше. Поэтому абсорбенты выбирают в основном по данным о растворимости в них поглощаемых веществ.

Читайте также:  Виды стентов используемые во время операции

Процесс физической абсорбции газа сопровождается выделением теплоты и, следовательно, повышением температуры абсорбента и контактирующей с ним газовой смеси. При значительном росте температуры возможно резкое понижение растворимости газа, поэтому для поддержания требуемой производительности абсорбера приходится в ряде случаев прибегать к его охлаждению внутренними или внешними охлаждающими элементами.

В абсорбционных процессах участвуют две фазы — газовая и жидкая. Газовая фаза состоит из непоглощаемого газа-носителя и одного или нескольких абсорбируемых компонентов. Жидкая фаза представляет собой раствор абсорбируемого (целевого) компонента в жидком поглотителе. При физической абсорбции газ-носитель и жидкий поглотитель (абсорбент) инертны взаимно и по отношению к переходящему компоненту.

Равновесие в процессах абсорбции определяет состояние, которое устанавливается при продолжительном соприкосновении фаз и зависит от состава фаз, температуры, давления и термодинамических свойств компонента и абсорбента.

В технике используют следующие принципиальные схемы абсорбционных процессов: прямоточные, противоточные, одноступенчатые с рециркуляцией и многоступенчатые с рециркуляцией.

Прямоточная схема взаимодействия веществ в процессе абсорбции показана на рис. 1, а. В этом случае потоки газа и абсорбента движутся параллельно друг другу, при этом газ с большей концентрацией распределяемого вещества приводится в контакт с жидкостью, имеющей меньшую концентрацию распределяемого вещества, и наоборот. Противоточная схема абсорбции показана на рис. 1, б. По этой схеме в одном конце аппарата приводят в контакт свежий газ и жидкость, имеющие большие концентрации распределенного вещества, а в противоположном — меньшие. В схемах с рециркуляцией предусмотрен многократный возврат в аппарат жидкости или газа. Схема с рециркуляцией жидкости показана на рис. 1, в. Газ проходит через аппарат снизу вверх, и концентрация распределяемого вещества в нем изменяется от Yн до Yк Поглощающая жидкость подводится к верхней части аппарата при концентрации распределяемого вещества Yн затем смешивается с выходящей из аппарата жидкостью, в результате чего ее концентрация повышается до Xс. Рабочая линия представлена на диаграмме отрезком прямой: крайние точки его имеют координаты Yн, Хк и Xк, Хс соответственно. Значение Хс определяют из уравнения материального баланса.

Принципиальные схемы абсорбции

Рис. 1. Принципиальные схемы абсорбции: а — прямоточная; б — противоточная; в — с рециркуляцией жидкости; г — с рециркуляцией газа; д — многоступенчатая с рециркуляцией жидкости; е — доля компонента, используемая для рециркуляции

Схема абсорбции с рециркуляцией газа приведена на рис. 1, г. Материальные соотношения здесь аналогичны предыдущим, а положение рабочей линии определяют точки Ас*(Yс, Хк) и B*(Yк, Хн). Ординату Yc находят из уравнения материального баланса. Одноступенчатые схемы с рециркуляцией могут быть как прямоточными, так и противоточными.

Многоступенчатые схемы с рециркуляцией могут быть прямоточными и противоточными, с рециркуляцией газа и жидкости. На рис. 1, д показана многоступенчатая противоточная схема с рециркуляцией жидкости в каждой ступени. На диаграмму рабочие линии наносят отдельно для каждой ступени, как и в случае нескольких отдельных ступенчатых аппаратов. В рассматриваемом случае рабочую линию составляют отрезки А1В1, А2В2 и А3В3.

Анализ описанных процессов позволяет сделать вывод, что одноступенчатые схемы с рециркуляцией абсорбента или газа по сравнению со схемами без рециркуляции имеют следующие отличия: при одном и том же расходе свежего абсорбента количество жидкости, проходящей через аппарат, значительно больше; результатом такого режима являются повышение коэффициента массопередачи и снижение движущей силы процесса. При определенном соотношении между диффузионными сопротивлениями в жидкой и газовой фазах такая схема может способствовать уменьшению габаритов аппарата. Очевидно, что рециркуляция жидкости целесообразна в том случае, если основное сопротивление массопередаче составляет переход вещества от поверхности раздела фаз в жидкость, а рециркуляция газа — когда основным сопротивлением процесса является переход вещества из газовой фазы к поверхности раздела фаз.

Многоступенчатые схемы с рециркуляцией обладают всеми преимуществами одноступенчатых схем и вместе с тем обеспечивают большую движущую силу процесса. Поэтому чаще выбирают варианты схем с многоступенчатой рециркуляцией.

Необходимо отметить, что процессы абсорбции характеризуются тем, что из-за малой относительной летучести абсорбента перенос вещества происходит преимущественно в одном направлении — из газовой фазы в жидкую. Переход поглощаемого вещества из газового состояния в конденсированное (жидкое) сопровождается уменьшением энергии в нем. Таким образом, в результате абсорбции происходит выделение теплоты, количество которой равно произведению количества поглощенного вещества на теплоту его конденсации. Связанное с этим повышение температуры взаимодействующих фаз, которое определяют с помощью уравнения теплового баланса, уменьшает равновесное содержание поглощаемого вещества в жидкой фазе, т. е. ухудшает разделение. Поэтому при необходимости целесообразен отвод теплоты абсорбции.

Конструктивно абсорбционные аппараты выполняют аналогично теплообменным, ректификационным, выпарным и сушильным аппаратам. По принципу действия абсорбционные аппараты можно разделить на поверхностные, барботажные и распылительные.

2. Адсорбция. Конструкции, принцип действия адсорбционных аппаратов

Адсорбция — процесс поглощения газов (паров) или жидкостей поверхностью твердых тел (адсорбентов). Явление адсорбции связано с наличием сил притяжения между молекулами адсорбента и поглощаемого вещества. По сравнению с другими массообменными процессами адсорбция наиболее эффективна в случае малого содержания извлекаемых компонентов в исходной смеси.

Различают два основных вида адсорбции: физическую и химическую (или хемосорбцию). Физическая адсорбция вызывается силами взаимодействия молекул поглощаемого вещества с адсорбентом (дисперсионными или ван-дер-ваальсовскими). Однако молекулы, соприкасаясь с поверхностью адсорбента, насыщают его поверхность, что ухудшает процесс адсорбции. Химическая адсорбция характеризуется химическим взаимодействием между средой и адсорбентом, что может образовывать новые химические соединения на поверхности адсорбента. Оба вида адсорбции экзотермичны.

Переход вещества из газовой и жидкой фаз в адсорбированное состояние связан с потерей одной степени свободы, т. е. сопровождается уменьшением энтропии и энтальпии системы, следовательно, выделением теплоты. При этом различают дифференциальную и интегральную теплоты адсорбции; первая выражает количество выделяющейся теплоты при поглощении очень малого количества вещества (2 г/100 г адсорбента), вторая — при поглощении до полного насыщения адсорбента. Повышение температуры в каждом процессе адсорбции зависит от теплоты адсорбции и массовой скорости газового (парового) потока, от температуропроводности этого потока и адсорбента, количества адсорбированного вещества и его концентрации. Так как адсорбционная способность адсорбента снижается с ростом температуры, экзотермичность процесса должна учитываться в инженерных расчетах. При больших тепловыделениях прибегают к охлаждению слоя адсорбента.

Процессы адсорбции отличаются избирательностью и обратимостью, позволяя поглощать (адсорбировать) из газовых (паровых) смесей и растворов один или несколько компонентов, а затем в других условиях выделять (десорбировать) их из твердой фазы. При этом избирательность зависит от природы адсорбента и адсорбируемых веществ, а предельное удельное количество поглощаемого вещества зависит еще от его концентрации в исходной смеси и температуры, а в случае газов — также от давления.

Адсорбенты — пористые тела с сильно развитой поверхностью пор. Удельная поверхность пор может достигать 1000 м2/г. Адсорбенты применяют в виде таблеток или шариков размером от 2 до 6 мм, а также порошков с размером частиц от 20 до 50 мкм. В качестве адсорбентов используют активированный уголь, силикагель, алюмосиликаты, цеолиты (молекулярные сита) и др. Важной характеристикой адсорбентов является их активность, под которой понимают массу адсорбированного вещества на единицу массы адсорбента в условиях равновесия. Активность адсорбента равна:

Читайте также:  ТОП 16 Лучших парогенераторов Рейтинг 2021

где М — масса поглощенных компонентов; G — масса адсорбента.

Адсорбенты характеризуются также временем защитного действия, под которым понимают время, в течение которого концентрация поглощаемых веществ на выходе из слоя адсорбента не изменяется. При большем времени работы адсорбента происходит проскок поглощаемых компонентов, связанный с исчерпанием активности адсорбента. В этом случае необходима регенерация или замена адсорбента.

В связи с разнообразием адсорбентов и адсорбируемых веществ единая теория адсорбции пока не разработана. Закономерности процессов адсорбции, в которых определяющую роль играют ван-дер-ваальсовские силы притяжения, можно удовлетворительно описать так называемой потенциальной теорией адсорбции. Согласно этой теории на поверхности адсорбента образуется полимолекулярный адсорбционный слой, энергетическое состояние молекул в котором определяет и значением адсорбционного потенциала, являющегося функцией расстояния от поверхности, и не зависит от температуры. Наибольшее знание адсорбционный потенциал имеет на поверхности адсорбента. Потенциальная теория применима к процессам адсорбции на адсорбентах, размеры пор которых соизмеримы с размерами поглощаемых молекул. В таких случаях происходит не послойное, а объемное заполнение пор.

Для описания процесса мономолекулярной адсорбции наибольшее применение получила теория Лангмюра, согласно которой за счет некомпенсированных сил у поверхностного атома или молекулы адсорбента адсорбированная молекула удерживается некоторое время не поверхности. Адсорбция происходит в особых точках поверхности — центрах адсорбции. Материальные потоки, участвующие в процессах адсорбции и десорбции, содержат переносимые и «инертные» компоненты. Под первыми понимаются вещества, переходящие из одной фазы в другую, а под вторыми — те которые в таком переносе не участвуют. В твердой фазе «инертным» компонентом является адсорбент.

Скорость процесса адсорбции зависит от условий транспорта адсорбируемого вещества к поверхности адсорбента (внешний перенос), а также от переноса адсорбируемого вещества внутрь зерен адсорбента (внутренний перенос). Скорость внешнего переноса определяется гидродинамической обстановкой процесса, а внутреннего — структурой адсорбента и физико-химическими свойствами системы.

Процессы адсорбции проводятся в основном следующими способами:

1) с неподвижным слоем адсорбента;

2) с движущимся слоем адсорбента;

3) с псевдоожиженным слоем адсорбента.

Принципиальные схемы адсорбционных процессов показаны на рис. 2.

Принципиальные схемы адсорбции

Рис. 2. Принципиальные схемы адсорбции: а — с неподвижным слоем адсорбента; б — с движущимся слоем адсорбента; в — с псевдоожиженным слоем адсорбента

При применении зернистого адсорбента используют схемы с неподвижным (рис. 2, а) и с движущимся (рис. 2, б) адсорбентами. В первом случае процесс проводится периодически. Вначале через адсорбент L пропускают парогазовую смесь G и насыщают его поглощаемым веществом; после этого пропускают вытесняющее вещество В или нагревают адсорбент, осуществляя таким образом десорбцию (регенерацию адсорбента).

Во втором случае адсорбент L циркулирует в замкнутой системе: его насыщение происходит в верхней — адсорбционной — зоне аппарата, а регенерация — в нижней — десорбционной. При применении пылевидного адсорбента используют схему (рис. 8.2, в) с рециркулирующим псевдоожиженным адсорбентом.

Источник

8.3. Адсорбционные процессы и установки

Достижению равновесия между твердой и подвижной газовой фаза­ми соответствует поглощение максимального количества вещества. Ус­ловия равновесия описываются в виде зависимости поглощающей способности (количества вещества М, поглощаемого единицей массы или объема адсорбента) от температуры Т и концентрации С поглощаемо­го вещества в равновесной подвижной фазе, т. е. M=f(T, С). Обычна условия адсорбционного равновесия изучают при постоянной темпера­туре. Зависимость M=f(C) называется изотермой адсорбции. Кон­кретная форма этой зависимости определяется свойствами и механиз­мом взаимодействия адсорбента и адсорбируемого вещества.

В связи с разнообразием адсорбентов и адсорбируемых веществ единая теория адсорбции пока не разработана. Закономерности про­цессов адсорбции, в которых определяющую роль играют вандерваальсовские силы притяжения, можно удовлетворительно описать так; называемой потенциальной теорией адсорбции. Согласно этой теории на поверхности адсорбента образуется полимолекулярный адсорбцион­ный слой, энергетическое состояние молекул в котором определяется значением адсорбционного потенциала, являющегося функцией рассто­яния от поверхности, и не зависит от температуры. Наибольшее значе­ние адсорбционный потенциал имеет на поверхности адсорбента. По­тенциальная теория применима к процессам адсорбции на адсорбен­тах, размеры пор которых соизмеримы с размерами поглощаемых молекул. В таких случаях происходит не послойное, а объемное заполне­ние пор.

Для описания процесса мономолекулярной адсорбции наибольшее применение получила теория Лангмюра [41], согласно которой за счет некомпенсированных сил у поверхностного атома или молекулы ад­сорбента адсорбированная молекула удерживается некоторое время на поверхности. Адсорбция происходит в особых точках поверхности – цен­трах адсорбции. Материальные по­токи, участвующие в процессах ад­сорбции и десорбции, содержат пе­реносимые и «инертные» компонен­ты. Под первыми понимаются веще­ства, переходящие из одной фазы в другую, а под вторыми – те, кото­рые в таком переносе не участвуют. В твердой фазе «инертным» компо­нентом является адсорбент.

Рис. 8.4. Принципиальные схемы ад­сорбции:

а – с неподвижным слоем адсорбента; б – с движущимся слоем адсорбента; в – с псевдоожиженным слоем адсорбента

Скорость процесса адсорбции зависит от условий транспорта адсорбируемого вещества к поверхности адсорбента (внешний перенос), а также от переноса адсорбируемого вещества внутрь зерен адсорбента (внутренний перенос). Скорость внешнего переноса определяется гид­родинамической обстановкой процесса, а внутреннего – структурой адсорбента и физико-химическими свойствами системы.

Процессы адсорбции проводятся в основном следующими способа­ми: 1) с неподвижным слоем адсорбента; 2) с движущимся слоем ад­сорбента; 3) с псевдоожиженным слоем адсорбента. Принципиальные схемы адсорбционных процессов показаны на рис. 8.4 [74]. При при­менении зернистого адсорбента используют схемы с неподвижным (рис. 8.4,а) и с движущимся (рис. 8.4,6) адсорбентами. В первом слу­чае процесс проводится периодически. Вначале через адсорбент L пропускают .парогазовую смесь G и насыщают его поглощаемым веще­ством; после этого, пропускают вытесняющее вещество В или нагрева­ют адсорбент осуществляя таким образом десорбцию (регенерацию адсорбента). Во втором случае адсорбент L циркулирует в замкнутой системе: его насыщение происходит в верхней – адсорбционной зоне аппарата, а регенерация – в нижней – десорбционной. При примене­нии пылевидного адсорбента используют схему (рис. 8.4,б) с рециркулирующим псевдоожиженным адсорбентом.

Контрольные вопросы

1. Какие виды абсорбции и адсорбции Вы знаете? В чем состоит их физическая сущность?

2. Сформулируйте закон, являющийся основным при процессе адсорбции.

3. В чем различие определения числа теоретических ступеней при ректификации, абсорбции и адсорбции?

4. В чем заключается преимущество применения при адсорбции многоступенчатых схем перед одноступенчатыми?

5. Укажите условия, при которых процесс адсорбции является наиболее эффек­тивным.

Источник



Занятие № 24. Адсорбционные процессы

События – это процедуры, которые выполняются всякий раз, когда это событие происходит. Например, событие OnChange компонента Edit происходит всякий раз, когда меняется текст в поле ввода. События находятся на вкладке Events Инспектора объектов. Если мы ничего не создадим, то при наступлении этого события ничего и не произойдет. Однако, если мы дважды щелкнем мышью по этому событию – создастся процедура обработки этого события. И тот программный код, который мы введем, будет выполняться всякий раз, когда это событие происходит.

Читайте также:  Установка свайных фундаментов в Санкт Петербурге и области

Событие OnChange применяют довольно часто, когда нужно проверить правильные ли данные вводит пользователь. Хорошая новость – большинство событий (а также свойств и методов), у большинства компонентов одинаковы. Например, практически любой компонент для ввода пользователем текста имеет событие OnChange. Применяете ли вы Edit или Memo, это событие работает одинаково.

по учебной дисциплине«Тепло-массообменное оборудование предприятий»

(к учебному плану 200__г)

Разработал: к.т.н., доцент Костылева Е.Е.

Обсуждена на заседании кафедры

от «_____» ___________2008 г.

1. Изучить адсорбционные процессы и установки, принципиальные схемы адсорбционных процессов. Основы расчета адсорберов.

Вид занятия: лекция

Время проведения: 2 часа

Место проведения: ауд. ________

1. Тепломассообмен: Учебное пособие для вузов / Ф.Ф. Цветков, Б.А. Григорьев. — 3-е издание. М.: Издательский дом МЭИ, 2006. – 550 с.

Плакаты, иллюстрирующие учебный материал.

Структура лекции и расчет времени:

№ п/п Структура занятия Время, мин.
1. 2. 3. Повторение пройденного материала на лекции №23 Учебные вопросы: 1. Адсорбционные процессы и установки. Принципиальные схемы адсорбционных процессов. 2. Основы расчета адсорберов. Заключение

1. АДСОРБЦИЯ, АДСОРБЦИОННЫЕ ПРОЦЕССЫ

Адсорбция — процесс поглощения газов (паров) или жидкостей, по­верхностью твердых тел (адсорбентов). Явление адсорбции связано с наличием сил притяжения между молекулами адсорбента и поглощае­мого вещества. По сравнению с другими массообменными процессами адсорбция наиболее эффективна в случае малого содержания извле­каемых компонентов в исходной смеси.

Различают два основных вида адсорбции: физическую и химическую (или хемосорбцию). Физическая адсорбция вызывается силами взаи­модействия молекул поглощаемого вещества с адсорбентом (диспер­сионными или ван-дер-ваальсовскими). Однако молекулы, соприкаса­ясь с поверхностью адсорбента, насыщают его поверхность, что ухуд­шает процесс адсорбции. Химическая адсорбция характеризуется химическим взаимодействием между средой и адсорбентом, что может образовывать новые химические соединения на поверхности адсорбента. Оба вида адсорбции экзотермичны. Однако если теплота физической адсорбции промышленных газов и паров соизмерима с их — теплотой конденсации (85-125 кДж/кмоль),- а в случае растворов даже меньше, то теплота химической адсорбции достигает нескольких сотен кило­джоулей на киломоль. Химическая адсорбция протекает обычно с не­большой скоростью и возможна при высоких температурах, когда фи­зическая адсорбция ничтожно мала.

Переход вещества из газовой и жидкой фаз в адсорбированное со­стояние связан с потерей одной степени свободы, т. е. сопровождается уменьшением энтропии и энтальпии системы, следовательно, выделени­ем теплоты. При этом различают дифференциальную и интегральную теплоты адсорбции; первая выражает количество выделяющейся теп­лоты при поглощении очень малого количества вещества (2 г/100 г ад­сорбента), вторая — при поглощении до полного насыщения адсорбента. Повышение температуры в каждом процессе адсорбции зависит от теплоты адсорбции и массовой скорости газового (парового) потока, от температуропроводности этого потока и адсорбента, количества ад­сорбированного вещества и его концентрации. Так как адсорбционная способность адсорбента снижается с ростом температуры, экзотермичность процесса должна учитываться в инженерных расчетах. При боль­ших тепловыделениях прибегают к охлаждению слоя адсорбента.

Процессы адсорбции отличаются избирательностью и обратимостью, позволяя поглощать (адсорбировать) из газовых (паровых) смесей и растворов один или несколько компонентов, а затем в других условиях выделять (десорбировать) их из твердой фазы. При этом избиратель­ность зависит от природы адсорбента и адсорбируемых веществ, а предельное удельное количество поглощаемого вещества зависит еще от его концентрации в исходной смеси и температуры, а в случае га­зов — также от давления.

Адсорбенты — пористые тела с сильно развитой поверхностью пор. Удельная поверхность пор может достигать 1000 м 2 / г . Адсорбенты применяют в виде таблеток или шариков размером от 2 до 6 мм, а также порошков с размером частиц от 20 до 50 мкм. В качестве адсорбентов используют активированный уголь, силикагель, алю­мосиликаты, цеолиты (молекулярные сита) и др. Важной характеристикой адсорбентов является их активность, под которой понимают массу адсорбированного вещества на единицу массы адсорбента в условиях равновесия. Активность адсорбента равна

где М — масса поглощенных компонентов; G — масса адсорбента.

Адсорбенты характеризуются также временем защитного действия, под которым понимают время, в течение которого концентрация поглощаемых веществ на выходе из слоя адсорбента не изменяется. При большем времени работы адсорбента происхо­дит проскок поглощаемых компонентов, связанный с исчерпанием активности адсор­бента. В этом случае необходима регенерация или замена адсорбента.

Достижению равновесия между твердой и подвижной газовой фаза­
ми соответствует поглощение максимального количества вещества. Ус­ловия равновесия описываются в виде зависимости поглощающей способности (количества вещества М, поглощаемого единицей массы или объема адсорбента) от температуры Т и концентрации С поглощаемо­го вещества в равновесной подвижной фазе, т.е. М = f(Т, С). Обычно условия адсорбционного равновесия изучают при постоянной темпера­туре. Зависимость М = f(G) называется изотермой адсорбции. Кон­кретная форма этой зависимости определяется свойствами и механиз­мом взаимодействия адсорбента и адсорбируемого вещества.

В связи с разнообразием адсорбентов и адсорбируемых веществ единая теория адсорбции пока не разработана. Закономерности про­цессов адсорбции, в которых определяющую роль играют ван-дер-ваальсовские силы притяжения, можно удовлетворительно описать так называемой потенциальной теорией адсорбции. Согласно этой теорий на поверхности адсорбента образуется полимолекулярный адсорбцион­ный слой, энергетическое состояние молекул в котором определяется значением адсорбционного потенциала, являющегося функцией рассто­яния от поверхности, и не зависит от температуры. Наибольшее значе­ние адсорбционный потенциал имеет, на поверхности адсорбента. По­тенциальная теория применима к процессам адсорбции на адсорбен­тах, размеры пор которых соизмеримы с размерами поглощаемых мо­лекул. В таких случаях происходит не послойное, а объемное заполне­ние пор.

Для описания процесса мономолекулярной адсорбции наибольшее применение получила теория Лангмюра, согласно которой за счет некомпенсированных сил у поверхностного атома или молекулы ад­сорбента адсорбированная молекула удерживается некоторое время на
поверхности. Адсорбция происходит в особых точках поверхности — цен­трах адсорбции. Материальные по­токи, участвующие в процессах ад­сорбции и десорбции, содержат переносимые и «инертные» компонен­ты. Под первыми понимаются веще­ства, переходящие из одной фазы в другую, а под вторыми — те кото­рые в таком переносе не участвуют. В твердой фазе «инертным» компо­нентом является адсорбент.

Скорость процесса адсорбции за­висит от условий транспорта адсор­бируемого вещества к поверхности адсорбента (внешний перенос), а также от переноса адсорбируемого вещества внутрь зерен адсорбента (внутренний перенос). Скорость внешнего переноса определяется гид­родинамической обстановкой процесса, а внутреннего — структурой адсорбента и физико-химическими свойствами системы.

2. УСТРОЙСТВО АДСОРБЕНТОВ И СХЕМЫ АДСОРБЦИОННЫХ УСТАНОВОК

Процессы адсорбции проводятся в, основном следующими способа­ми: 1) с неподвижным слоем адсорбента;

Источник